Optimizing the detergent concentration conditions for immunoprecipitation (IP) coupled with LC-MS/MS identification of interacting proteins.
نویسندگان
چکیده
Immunoprecipitation (IP) coupled with LC-MS/MS is a widely used method in proteomics research to identify proteins and to study protein-protein interactions. IP techniques allow purification of proteins of interest and reduce sample complexity before introduction to the mass spectrometer. The effectiveness of IP experiments is an important factor for identification of proteins and protein-protein interactions. In this paper, a variety of IP conditions were studied systematically to improve IP-based protein interaction identification capabilities. Low concentration detergent (around 0.05% NP40/PBS) was found to improve IP effectiveness by decreasing non-specific binding. However, higher concentration detergent (e.g. 1% NP40/PBS) was detrimental. Furthermore, with lower protein concentrations, the IP system showed lower tolerance to detergent. For example, with a detergent concentration higher than 0.05% NP40/PBS, IP experiments were unsuccessful with low protein concentration (e.g. 0.28 microM ADH). In some cases the observed results were even worse than the results obtained without detergent. However, when the protein concentration was high (e.g. 1.12 microM ADH), this effect was not obvious and the high detergent (higher than 0.1%) experimental results were similar to those from low detergent concentration experiments (around 0.05%). Another application of this strategy to a more general system based on FLAG-Bacterial Alkaline Phosphatase (BAP) and anti-FLAG antibody was also performed. These results also suggested that low detergent concentration (0.05% NP40) is helpful for IP experiments, especially for the experiments with low protein concentrations. Considering that in most real applications, the proteins of interest are usually present in low abundance, a low amount of detergent is recommended to be used. The optimized detergent concentration was determined to be 0.05% in these studies. However, the key result presented here illustrates that both detergent and protein concentrations should be carefully considered when one is trying to optimize IP prior to mass spectrometry experiments.
منابع مشابه
Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach
MLN8237 is a highly potent and presumably selective inhibitor of Aurora kinase A (AKA) and has shown promising antitumor activities. Like other kinase inhibitors which target the ATP-binding site of kinases, MLN8237 might be expected to have potential cellular off-targets. Herein, we report the first photoaffinity-based, small molecule AKA probe capable of both live-cell imaging of AKA activiti...
متن کاملHigh-throughput analysis of protein/peptide complexes by immunoprecipitation and automated LC-MS/MS.
BACKGROUND The identification of interacting proteins within protein complexes is key to understanding the transduction and regulation of cell signaling pathways, and is also a useful tool for identifying novel disease markers. Immunoprecipitation of protein complexes followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been used to identify targets that bind to a protein o...
متن کاملIdentification of UHRF1/2 as new N-methylpurine DNA glycosylase-interacting proteins.
N-methylpurine DNA glycosylase (MPG), a DNA repair enzyme, functions in the DNA base excision repair (BER) pathway. Aberrant over-expression of MPG in various cancers suggests an important role of MPG in carcinogenesis. Identification of MPG-interacting proteins will help to dissect the molecular link between MPG and cancer development. In the present study, using immunoprecipitation coupled wi...
متن کاملDetergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
High-throughput proteomic analysis based on a biotin switch combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS) enables simultaneous identification of S-nitrosylated sites and their cognate proteins in complex biological mixtures, which is a great help in elucidating the functions and mechanisms of this redox-based post-translational modification. However, detergents such as...
متن کاملSimultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry.
We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides, and sugar bisphosphates. The use of the ion-pair agent hexylamine and optimization of the pH of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 134 4 شماره
صفحات -
تاریخ انتشار 2009